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AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 

PETER L. MONTGOMERY AND ROBERT D. SILVERMAN 

ABSTRACT. J. M. Pollard, in 1974, presented the P - 1 integer factoring al- 
gorithm. His paper couched the algorithm in theoretical terms based upon use 
of Fast Fourier Transform techniques, but he was unable to say whether the 
method could be made practical. We discuss the mathematical basis of the al- 
gorithm and show how it can work in practice. The practical implementation 
depends, for its success, upon the use of Residue Number Systems. We also 
present an open problem as to how the method could be made to work for the 
Elliptic Curve factoring algorithm. 

1. INTRODUCTION 

Let N be an odd composite integer whose factorization is sought. A key 
problem in one variant of the second phase of the P - 1 and Elliptic Curve 
(ECM) factoring algorithms [1 1] is constructing two sequences 

X0 , XI X ... X xM-1 ' 

goXYO , * *.. * ,Yn-I 

over Z/NZ and checking whether GCD(xi - yj, N) > 1 for some i and j. 
For example, in P - 1 the xi and yj might represent selected powers of an 
element H mod N [11, p. 251]. In ECM the xi and yj might represent the 
x-coordinates of selected points on an elliptic curve [11, p. 256]. A nontriv- 
ial GCD will usually yield a factorization of N, and the chance of finding a 
nontrivial GCD increases with mnn. 

Let lg denote logarithm to the base 2 and In denote natural logarithm. Pre- 
vious methods required O(mn) operations mod N to do the above tests; this 
comes to O(mn lg 2(N)) bit operations, using classical algorithms for modular 
arithmetic. If instead we select m and n such that m I n and m is a power of 
2, then we can do it in O((n + m) lg(m) lg(N) [lg(m) + lg(N)]) operations and 
O(m [lg(m) + lg(N)]) space by using fast polynomial convolution algorithms. 
The time is even less for the P - 1 algorithm if we require that the y-sequence 
be a geometric progression mod N. The constants are sufficiently small that 
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the method is practical. For example, if m is 16384, n is 131072, and N is a 
100-digit number, then an Alliant FX/8 with four computational elements can 
complete the approximately 2 109 tests in 16 minutes. In this way we found 
the factors in Table 2 (see ?8). 

2. CLASSICAL P - 1 ALGORITHM 

The P - 1 factoring algorithm [ 14] depends, for its success, upon the concept 
of a group of smooth order. An integer is said to be y-smooth if all of its prime 
factors are less than y . Suppose that we have an arbitrary composite odd integer 
N that we wish to factor, and that p is a prime dividing N. Preselect a limit 
B1 (positive, real), and put 

(2.1) M= f Pl', 

p, prime 

so that M is the product of prime powers less than B1 . Then, choose any 
small integer a I ? 1 which is coprime to N, and compute 

(2.2) H = aM mod N. 

If p I N and p - 1 I M, then Fermat's Little Theorem implies that for some 
integer k, 

a modN = ak(p- ) modN and a k(p-) - I = 0 (mod p). 

Hence, 

(2.3) p I GCD(am - 1, N) = GCD(H- 1, N). 

Relation (2.3) will be true whenever p - 1 has all of its prime power divisors 
less than B1, that is to say, the order I(Z/pZ)*I of the multiplicative group 
(Z/pZ)* is B1 -smooth. It is a possible but rare occurrence for large N that N 
has additional factors q of the same form as p. In that case all will appear 
in the GCD of (2.3). To rectify this problem, one reduces the value of M. 
Otherwise, p will equal the GCD, and not just divide it, in (2.3). 

A second stage of the algorithm succeeds whenever I(Z/pZ)*I is smooth up 
to B1 and has a single prime factor between B1 and B2, where B2 > B1. 
This part of the algorithm proceeds as follows. Precompute the quantities 

(2.4) H , H4, ..., HR mod N, 
where the maximum exponent R equals or exceeds the largest gap between 
successive primes in the interval (B1 , B2]. It seems not to exceed ln 2(B2) [3, 
17]. For B <<s<B2, define 

QS = Hsmod N = ams mod N. 

If pj is the jth prime in the interval (B1, B2], then 

(2.5) QP -Hp' modN and Qp = HPJ+- PQp (mod N), 
p1 J+1 I 
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where Hj+'I P mod N is found by table look-up. Accumulate the product 

7r(B2)-7r(B,) 

(2.6) P= (Qp -1) mod N 
j=I 

and periodically compute GCD(P, N). Step 2 succeeds if p - 1 I Ms for 
some prime s with B1 < s < B2. When the algorithm is implemented in 
this fashion, each prime in the interval (B1 , B2] requires one multiplication 
mod N from (2.5) and one from (2.6). Add the setup cost in (2.4) to get a 
total of 2(ir(B2) - ir(B1)) + O(ln2(B2)) modular multiplications. Montgomery 
[1 1] suggests methods for reducing the number of multiplications. 

3. CONVOLUTION THEOREM 

Our algorithms require considerable manipulation of polynomials over 
Z/NZ, esp. multiplication and evaluation. One may use Fast Fourier Trans- 
forms (FFT) to perform the polynomial multiplications via the Convolution 
Theorem [1, Chapter 7]. 

Theorem 1 (Convolution theorem). Let f(x) = EZ'j- fix' and g(x) = 

Z'I_ gix' be polynomials of degree at most n - 1. Let 

n-I 

s(x) = f(x)g(x) mod (xn - 1) = Zsix' 
i=O 

(so that si = Zj+k=-l (mod n) f gk). Form the following vectors of length n: 

If =[fo fiX X ... n-1]5 

9 = g X0 915 .. X gn-1]- 

Then the circular convolution f ? g is 

50=[So X51 SI * *. * Sn_-I FFT (FFT ( ) * FFT g)) 

where * indicates a pointwise product. The quantity FFT(x) is the Fast Fourier 
Transform of the vector x, and FFT 1 is the inverse transform. 

The FFT in Theorem 1 is performed over the ring Z/NZ and is exactly 
analogous to the more familiar FFT's over C. If co is a primitive root of order 
n [1], then the FFT of the vector x of length n is 

n-I 

FFT(x) = [y0,Y1,..Y1] where l =Z xJw. 
J=O 

By choosing n larger than the degree of the product and by padding f and g 
with leading zeros, one can compute an exact polynomial product via a circular 
convolution. 

Assume n > 1 is a power of 2 and N is odd. If we know a primitive nth 
root of unity mod N, then a convolution algorithm based upon straightforward 
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implementation of the Fast Fourier Transform will take O(n lg(n)) arithmetic 
operations mod N. Such a primitive root will not exist unless all prime fac- 
tors of N are congruent to 1 mod n; however the factorization of N is un- 
known. Nussbaumer's convolution algorithm [13; 8, Exercise 4.6.4-59] avoids 
this requirement, and can perform a circular convolution of length n in time 
O(n lg(n)) multiplications and O(lg2 (n)) additions mod N. We do not use, 
and hence do not describe, Nussbaumer's method in detail. The convolutions 
can be performed more efficiently with the use of Residue Number Systems, 
because multiplication mod N is expensive. 

4. POLYNOMIAL CONVOLUTIONS BY RESIDUE NUMBERS 

One can multiply two polynomials in Z/N7[x] together mod N by multi- 
plying them together over Z and then reducing the coefficients mod N. If the 
original coefficients are in the interval [0, N- 1i], and both original polynomials 
have degree at most n - 1, then the coefficients of the polynomial product will 
be in the interval [0, n (N - 1)2]. By reducing the original coefficients mod- 
ulo enough primes pi, performing separate convolutions over the finite fields 
Z/piZ, and then using the Chinese Remainder Theorem (henceforth abbrevi- 
ated as CRT), the coefficients of the product mod N can be reconstructed. The 
key to the usefulness of this approach is that all of the computations may now 
be performed in single-precision arithmetic if the pi 's are chosen properly. 

To compute a polynomial product f(x)g(x) mod N mod (xn - 1), where f 
and g have degree at most n - 1 with coefficients in the interval [0, N - 1], 
select K distinct primes pi for 0 < i < K- 1 with pi1 (mod n), such that 

K-1 

(4.1) P= f Pi>nN2/(1 -_ ), > 0. 
i=O 

Try to select the primes pi as large as possible while remaining single precision, 
in order to minimize K. If the machine has too small a word size, then there 
may not be enough primes available, forcing the use of double precision. If 
all pi are in an interval [Pmax/2' Pmax]" then the Prime Number Theorem says 
(approximately) 

K < Pmax - Pmax/2 _ Pmax 
- q(n) ln(Pmax) 20(n) ln(Pmax)' 

But (4.1) requires K ln(pmax) > ln(n) + 2 In(N) . Consequently, 

Pmax > 2q$(n)[In(n) + 2 In(N)]. 

For example, if n = 65536 and No 101000, then 

Pmx> 2 * 32768 * 4620 -,,1. 1 . 228 

requiring the use of 29-bit primes. If one uses 32-bit primes, then 

3g(n) + 2 1g(N) 6g(N) 
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One now performs K single-precision convolutions mod pi, rather than one 
convolution mod N. This construction provides an additional advantage in 
that the individual convolutions are independent of one another and may be 
performed in parallel or in vector mode. The congruence restrictions on pi 
ensure that appropriate primitive roots of order n, required to do the FFT's, 
exist. 

Let sij, ? < i < K- 1, 0 < j < n- I be the coefficients obtained from the 
individual convolutions taken mod pi. We use the CRT to reconstruct the coef- 
ficients of the product f(x)g(x) mod (xn - 1) mod N from those convolutions. 
Precompute the quantities 

VI = P/pi and r1 = vil mod pi, 0 < i < K- 1. 

For each j, 0 < j < n - 1, compute 

(4.3) yij = rlsl mod pi, 0 < i < K - 1 

and 
K-1 K-1i 

(4.4) SiZ vlyl -k P where k = L P + 8,2 

Let the jth coefficient of f(x)g(x) mod (xn - 1) be s j. Then 

Si= sli(Virl)sij=_vlylJ =_ SJ (mod p,) 

for all i, implying s= S. (mod P). The choice of P in (4.1) ensures 0 < 
s < n(N- 1)2 < P, and the choice of k in (4.4) ensures 0 < Si < P. 
Consequently sj = SJ, implying sj mod N = Si mod N. 

When evaluating SJ mod N, one can use precomputed values of vi mod N 
and P mod N in (4.4). 

The value of k can be estimated by floating-point arithmetic if one selects 
ie in (4.1) and (4.4) so the accumulated error (due to round-off) in the second 
sum of (4.4) will not exceed e/2. Indeed, 

K-1 
yj 

K-1 V Yj 

1=0 11=0 

= (SJ + kJP)/P + e/2 

E [k + e/2, ki + e/2 + n(N - 1)2/P] 

C [ki +,e/2, k +,e/2 + (I -,e)] 

= [k + e/2, ki + 1 -e/2] 

differs by at least e/2 from the nearest integer. 
The usual FFT algorithm divides by n at the end of each convolution mod 

p,. These divisions may be incorporated into (4.3) by replacing r1 by n1 Ir 
modp,. 
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5. FFT IMPLEMENTATION OF STEP 2 

Select 0 B2 and compute the coefficients ai of 

(5.1) f(X)=Zalx' = H (x-Hu) modN, 
1=0 0<u<6 

GCD(u, 0)=I 

where 0 denotes the Euler totient function. After computing the powers Hu, 
the coefficients al can be computed by writing the product in (5.1) as a product 
of polynomials of equal degree, and recursively multiplying them together in 
pairs, using the methods of ?4. 

Next, evaluate f(x) along the geometric progression 

(5.2) HV0, < v < B2/0. 

The reason is that if p I GCD(Hs - 1, N) where s = vO - u, then 

(5.3) P I GCD(Hv 
- Hu ,N) 

so that 

(5.4) p I GCD(f(HVo ), N). 

These points of evaluation form a geometric progression mod N. A polyno- 
mial of degree n may be evaluated along m points of a geometric progression 
with a circular convolution of length n + m, followed by some simple post- 
multiplications. Given f defined by (5.1), suppose we wish to evaluate it at 
x = e, er, er2 ,errn1i. Set L= n + m - 1, where n = 0(0), and form the 
vectors (all taken mod N) 

Y = a r-k(k+ 1)/2 0 < k < n; 

(5.5) Yk = ? n + 1 < k < L; 

eL-k (L-k)(L-k+1)/2 0 < k < L. 

Compute the circular convolution, y 0 z, of the vectors y and z, yielding 
another vector u of length L + 1 . We then apply the following result. 

Theorem 2 (Polynomial evaluation). If the vectors j7 and za are given as in (5.5), 
and u = y 0 z, then 

(5.6) k (erk e-k r-k(k+1)/2U 0 < k < m- 

Proof. By the definition of a circular convolution, the elements of y 0 z are 
the coefficients of a polynomial u which is the product mod (xL+I - 1) of two 
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polynomials whose coefficients are given by yj and Zk . If i> n then 

Ui = E Yj Zk= E Yj Zk 
j+k-i (mod L+1) j+k=i (mod L+1) 

O<j<L O<j<n 
O<k<L O<k<L 

-j(j+1)/2 L-k (L-k)(L-k+1)/2 
ai r e r 

j+k=l 
O<J<n 
O<k<L 

Let i= L - s, where 0 < s < m - 1 . This implies that k= L - s - j, and 
n 

UL-s = E a rj(j+ 1)/2 s+j r(s+j)(s+j+1)/2 

j=O 

n 
S s(s+ l)/2 E Ja eSrSj = eSrs(s+ 1)/2 f (erS ) 

J=o 

As with the coefficient evaluation, these convolutions may be performed modulo 
a fixed set of primes and the CRT used to reassemble the results mod N. The 
CRT need be used only for those coefficients required by (5.6). 

Our application uses (5.5) and (5.6) with r = Ho mod N, while e varies. 
Since GCD(rk(k+l)/2ek, N) = 1 , we can ignore the multiplications from (5.6) 
and take greatest common divisors directly from the final convolution vector in 
(5.4). The vector y is fixed, so it and its forward transforms mod pi need to be 
computed only once. The powers of r and I/r in (5.5) may be precomputed, 
so that computation of Zk requires only computing the relevant powers of e 
and multiplying them by the appropriate power of r. 

If (p - 1) I Ms, then the algorithm will succeed from (5.6) at k = L i0 J. In 
essence, evaluating f (rk) tests all possible primes s in the range [0(k- 1), k] . 
The reason we need powers of e in (5.5) and (5.6) is because we need to evaluate 
f(rX), x = 0, ... , B2/O and we evaluate it at only m points at a time. The 
first progression runs from 1 to rm 1, the second from rm to r2m- 1, etc. We 
thus set e successively to 1, rm , r 2m ... and perform multiple convolutions 
of length (O) ++m. 

It is not necessary to compute a GCD for every k in (5.6). Instead, one can 
compute H%1l ULk mod N and then take a single GCD. If multiple factors 
appear, then one can go back and compute the GCD's individually. 

6. COMPLEXITY 

In this section we compare the complexity of performing the convolutions 
mod N, using Nussbaumer's algorithm, versus using the method in ?4. We 
also suggest how to select the algorithm parameters to yield good performance. 
We take, as our fundamental unit of work, a single-precision modular multipli- 
cation. 
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Consider the cost of a circular convolution of length n with coefficients 
in Z/NZ. Nussbaumer's algorithm uses O(nlg(n)) multiplications mod N 
and O(n lg2 (n)) additions mod N. If one assumes classical algorithms for 
arithmetic, then the cost of a modular multiplication mod N is O(lg2 (N)) and 
the cost of a modular addition is O(lg(N)), for a total cost of 

(6.1) O(n lg(n) lg(N) [lg(n) + lg(N)]) units (Nussbaumer's algorithm). 

Using the CRT requires O(n lg(n)K) units to do a convolution of length n 
mod all pi, plus O(n lg(N)K) to reduce the original coefficients mod p1, and 
O(n lg(N)K) more to perform the CRT. Upon substituting K from (4.2), we 
find that the work per convolution is 

(6.2) O(n lg(N) [lg(n) + lg(N)]) units (CRT). 

A. Computation of coefficients. Let d = q(6). To compute the polynomial of 
degree d, we perform one convolution of length d, two of length d/2, four 
of length d/8 . The total work by Nussbaumer's algorithm sums to 

(6.3) O(d lg (d) lg(N) [lg(d) + lg(N)]) units. 

If we use the CRT, then the total work is 

(6.4) O(d lg(d) lg(N) [lg(d) + lg(N)]) units. 

We observe that (6.4) is a factor of O(lg(d)) faster than (6.3). We also note 
that the factor of 1/ 16, from (4.2), does not affect the asymptotic complexity, 
but has great practical value. A naive computation of the coefficients, by direct 
long multiplication, would take 

(6.5) O(d2 1g2(N)) units. 

B. Evaluation of the Polynomial. Performing a convolution of length L + 1 to 
evaluate the polynomial mod N via Nussbaumer's method will take 

(6.6) O((L + 1) lg(L + 1) lg(N) [lg(L + 1) + lg(N)]) units. 

Performing the convolutions via the CRT will take 

(6.7) O((L + 1) lg(N) [lg(L + 1) + lg(N)]) units. 

We observe that (6.7) is a factor of O(lg(L + 1)) faster than (6.6). 

C. Example. To illustrate how much of a typical speedup is obtained by using 
convolutions over (2.5) and (2.3), let us take B2 = 1010. Consider using Nuss- 
baumer's algorithm and select 0 = 72930 = 2 * 3 * 5 * 11 * 13 * 17 105 . We 
then have d = 0(0) = 15360. The advantage of selecting 0 in this fashion is 
twofold. The first is that /(0) is small, relative to 0, and hence the degree of 
the polynomial is small. The second is that it allows the sizes of the convolutions 
to be very close to powers of 2, simplifying computation of the FFT's. 

Nussbaumer's algorithm takes exactly 3 21n-+Flgnl multiplications mod N 
for a convolution of length 2 n [8, Exercise 4.6.4-59], so with Nussbaumer's 
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algorithm, for our chosen 0, computation of the coefficients in (5.1) will take 
14 14-n n 1rgn 20 6 

E>l52 3 * 2n l[lg(n)1 = 3 * 2 3.1 * 10 multiplications mod N. The 
time to perform the necessary additions mod N will be small relative to this 
quantity. To evaluate the polynomial, we will need to compute f(HVo) for 
v = 1, ..., (1010/72930) 138000. This will be done in eight convolutions 
of length 32768, each convolution computing 32768 - 15360 = 17408 points. 

18 6 The convolutions will then take 8 . 3 * 2 6.3* 10 multiplications mod N, 
and the total work will be about 9.4 106 modular multiplications. Since there 
are approximately 4.5* 108 primes less than 101 , performance of step 2 via 
convolutions will be about 95 times better than the original method using (2.5). 

Use of the CRT will result in an even greater speedup over Nussbaumer's 
method. For a 300-bit N represented in radix 230 it takes 210 single-precision 
multiplication instructions to multiply two numbers mod N. It also takes 
twenty 31-bit primes from (4.1) for the CRT. A convolution of length 2n will 
therefore take 210.3.2 n-1+?lg(n)1 = 31 5.2n+?[g(n)] operations using Nussbaumer's 
algorithm. Assuming that the necessary powers of the primitive roots of unity 
have been precomputed, careful counting of the total operations involved in the 
CRT reveals a total of (60n + 670)2n multiplications/divisions to perform the 
convolutions and reconstruct the coefficients. For n = 15, the CRT is there- 
fore 3.4 times as fast. This will increase asymptotically to n times as fast as 
N - oo. 

7. ALGORITHMIC DESCRIPTION AND CODING CONSIDERATIONS 

For the example given above we have /(O) = 15360 = 2 0.3 .5. In practice, 
before beginning the convolutions, it is convenient to break the product in (5. 1) 
into smaller products, each a polynomial of degree equal to the odd part of 
q(0) . Our code therefore starts by forming 1024 polynomials mod N of degree 
15. Multiply these in pairs to get 512 polynomials of degree 30, then 256 of 
degree 60, ... , 1 of degree 15360. At each stage, all convolution lengths are 
equal, so it suffices to select the pi and do the precomputations for the CRT 
only once per stage. Each polynomial mod N is converted to K polynomials 
mod pi, the convolutions are performed, and the polynomials mod pi are then 
converted back to a single polynomial mod N. The full algorithm is as follows: 

(1) Select B1 and perform step 1 of the P - 1 algorithm. Let H be the 
output. 

(2) Verify GCD(H- 1, N)= 1. 
(3) Given H from step 1, compute Hu for 1 < u < 0, GCD(u, 0) = 1. 
(4) Form, via long multiplication, q(0)/q polynomials mod N of degree 

q, where q is the odd part of q(0). Let conlen be the least power of 
2 exceeding 2q. 

(5) Repeat the following procedure until one has a single polynomial f(x) 
of degree /((0), as in (5.1). 
Sa. Select an appropriate set of primes. These primes must be congruent 
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to 1 (mod con/en). Find appropriate primitive roots of these primes 
for the FFT's. The primes and their roots can be precomputed and 
placed in a table. 
Sb. Reduce the polynomials mod each of these primes. 
Sc. Multiply the reduced polynomials in pairs, via the Convolution 
Theorem, yielding 0(0)/(2q) polynomials of degree 2q for each pi. 
Replace q by 2q and con/en by 2conlen. 
Sd. Reconstruct products mod N from the separate polynomials mod p, 
via the CRT. 

(6) Compute or look up in a table the necessary primes for (5.5) and (5.6). 
(7) Reduce f(x) modulo these primes and perform the convolutions to 

evaluate f(x) mod pi. 
(8) Reconstruct f(x) mod N via the CRT and compute the GCD's in 

(5.4). 
Remark 1. One can effectively find a primitive root of order r mod p by 
successively trying a (p- 1)/r for a = 2, 3, . If r is a power of 2, it suffices 
to make a a quadratic nonresidue mod p. 
Remark 2. There are variations to our scheme for the calculation of the coef- 
ficients. Rather than treat the coefficients as integers in [0, N - 1], they can 
instead be treated as in the interval [(1 - N)/2, (N - 1)/2]. In this case the 
bound in (4.1) for P can be halved and the computation of ki in (4.4) should 
round to the nearest integer. However, this scheme will usually not reduce K, 
and it requires signed arithmetic during the conversion to and from residue 
numbers. It is easier, when doing multiple-precision arithmetic, to use only 
unsigned quantities. 

Remark 3. The vectors in (S.S) can be computed without modular exponenti- 
ations (which are expensive). To compute rk = rk(k+l)/2 for successive values 
of k, it suffices to do the following: 

(1) Set ro= 1 and let R0=r. 
(2) For i =1, ..., n, compute ri = ri- -11 and Ri = RORI1. 

This replaces each modular exponentiation with just two modular multiplica- 
tions (but does not parallelize well). Likewise, one can replace the last line of 
(S.S) by 

(1) Set zL= 1 and let ZL=e. 

(2) For i = L- 1, ..., 0, compute Z1 = rZ1+1 and zi = zi+IZI . 

Remark 4. Instead of using 0 < u < 0 and GCD(u, 0) = 1 in (5.1), one can 
use arbitrary representatives of (Z/0Z)* for u provided each ult < B2. The 
advantage is that one can use the multiplicative relations amongst the Hu to 
shorten the computation of f by a factor of O(lg(0(0))). We illustrate the 
procedure assuming 0 = 2qlq2q3 for distinct odd primes q,, with each ql _ 1 
(mod 2"' ). 
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(1) Initialize 

F(x, y)= II (x - Hiy) mod N 
l<j<Q 
j odd 

1 <j modq < (qua-1)/2 Vi 

(homogeneous of degree (q, - 1)(q2 - 1)(q3 - 1)/20'+a2+'3 = 0(0)/2c'+01+03 
(2) For 1< i<3 and 1 <k<a, replace 

M j - 1)2k(mod qj) F(x, y) +- F(x, y)F(x, HMy) mod N where { (q1 1)/2( 
m 0(mod O/q,). 

The iterations over i and k can occur in any convenient order. Each iteration 
doubles the degree of F, and uses approximately 2 lg(m) + 2 deg(F) multi- 
plications mod N to compute the coefficients of F(x, Hmy) from those of 
F(x, y), plus one convolution of length at least 2 deg(F) + 1 to do the poly- 
nomial multiplication. 

(3) Set f(x) = F(x, 1). 

Remark 5. Our implementation uses 42 Mbytes of data storage and can ac- 
commodate N I 250 decimal digits. Storage requirements grow linearly with 
lgN. We did not optimize the program for space and can cut storage at least 
in half by using some statically defined arrays for different things in different 
places. For example, we declared separate arrays for the coefficient and polyno- 
mial evaluation calculations. A minimal storage implementation should be able 
to handle 100-digit composites in 6-8 megabytes of storage without difficulty. 

8. RESULTS 

In this section we present timing information for various stages of the algo- 
rithm on an Alliant FX/8 computer with four computational elements (CE's). 
Each one has vector instructions which make performing FFT's and dot prod- 
ucts as in (4.4) very efficient. The Alliant computer is a tightly coupled parallel 
processor with shared memory. Many stages of our algorithm can be com- 
puted in parallel with 100% efficiency. For example, the convolutions mod each 
of the separate primes from (4.1), the reconstruction of the coefficients from 

Si mod N, and the GCD's from (5.4) may all be conducted in parallel. Fur- 
thermore, since there are K primes from (4.1), T processors (T < K) will 
run approximately T times as fast as one processor. The step-2 parts of the 
computations that are not parallelizable form only a small percentage of the 
total work. Table 1 gives timing information in seconds for a step-2 limit of 
10 for 25-, 50- and 100-digit composite integers. The times given that are 
relevant to (5.5) and (5.6) are those for one iteration only, using the parameters 
given in ?6.C. Eight separate iterations of (5.5) and (5.6) are required to cover 
the entire interval from B1 to B2. The time given to set up the vectors in (5.5) 
is split into two parts. The first number is the time to compute the powers of r, 
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TABLE 1. Algorithm performance in seconds (4 computational elements) 

Computation 25 Digits 50 Digits 100 Digits 

Compute roots of (5.1) 12 48 195 

Form 1024 polynomials 27 110 440 
of degree 1 5 

Convolution time for (5.1) 105 212 425 

Coefficient reduction & 9 5 0 
CRT time for (5. 1) 

Construct vectors for (5.5) 28/5 105/18 380/70 

Convolutions for (5.5) 83 165 330 

CRT time for (5.5) 13 50 200 

and occurs only once. The second number is the time to multiply by the powers 
of e for Zk, and occurs at each iteration. 

Using naive modular multiplication, step 1 takes O(B1 lg 2(N)) time. It does 
not parallelize at all, short of programming the underlying modular multipli- 
cation in parallel. A single computational element of the Alliant takes 5500 

6 100 seconds to perform step 1 for B1 = 3. 10 and N 10-IO 
A step-2 implementation based upon (2.5) and (2.6) takes approximately 

55000 seconds for B2 = 108 and N = 10 10 on a single CE. It takes about 
8500 seconds when speeded by the methods of [11]. We have not taken step 
2 to 1010 by the older methods, but since ir(10 )/( 108) 79, we project 
that for B2 = 1010 step 2 will take about 4,300,000 seconds using (2.5) and 
(2.6) directly, and 660,000 seconds by the methods of [11] for a single CE. 
Furthermore, computation of step 2 via (2.5) and (2.6) does not parallelize 
well. The newer methods presented herein take 30700 seconds for a single CE; 
a factor of 139 over (2.5) and (2.6) and a factor of 22 over the methods of [11]. 
We observe that these factors will increase as N increases. 

Table 2 lists some new factorizations found by the method described herein, 
6 10 using a step-I limit of 3 10 and a step-2 limit of 10 . With the exception of 

U575 they are all taken from the 'Cunningham Project' [6]. The designations 
y, xxx? indicate a cofactor of yXXX ? 1 respectively. The number U575 was 
a cofactor of the 575th Fibonacci number and its 34-digit factor is the largest 
factor yet found by P - 1 . We note that on average the Elliptic Curve algorithm 
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will still be more effective than the P - 1 algorithm, even with our enhance- 
ments. While step 1 of ECM runs about 8 times slower than step 1 of P - 1, 
step 2 takes about the same time for both, using non-FFT techniques. A com- 
parison of the run times and effectiveness of the two methods was presented in 
[5]. It is difficult to directly compare the run time of the two algorithms since 
ECM is a random method while P - 1 is deterministic. Many factors which 
would have otherwise been found by our method had already been found by 
ECM. 

TABLE 2. Factorizations 

N Factor ( P) P - 1 

2,584+ 32871186029052837857 2 13 73 163 * 209333 * 31722973 
2,656+ 591100350038949953 26 41 71 5737 . 553036999 
2,664+ 3508428556083287152033 25 3 3 71 * 83 * 151 * 2007359 * 15751691 
2,784+ 66308056470365249 26 .72 11 * 19 433 * 233644769 

1 6 2 3 
2,1008+ 494077391563970390335488001 2 * 3- l 5 * 7 31 l 67 168677 l 2732575201 

5 2 
2,1032+ 242193739165634585377 2 * 3 * 43* 1861 * 24371 * 431203469 
2,535+ 10155021917057853331411 2 . 35 5 * 107 * 5347 * 17093 * 427328971 
2,591+ 8588408897489780521 23 .32 *5 * 7 167 197 * 367 l 282269147 
2,661+ 36640709883877569115302731 2 * 5 * 457* 661 * 131543 * 163337 * 564538939 

3 2 2 
2,733+ 6032100214690846655623731769 2 *3l7 *17 *67 173 * 733 * 1634681- 

*1277925359 
2,813+ 897186516077633497 23 *3 11 * 13 * 271 * 3559564581 
2,873+ 921446320166308603 2.32 *29 l 97 * 309107 l 58873379 
2,895+ 5070463106922154841 23 * 5 19 . 179 * 5737 * 6496749983 
2,1017+ 28876407885213594067 2.32 *41 * 113 * 1092173 l 317042093 

8 2 2 2 U575 7146831801094929757704917464134401 2 .5 .11 *23 .821 . 3371 . 39209. 
.3394739 * 47358559 

9. APPLICATION TO P + 1 ALGORITHM 

For an integer n, the nth Lucas (Chebyshev) polynomial, Vn, is defined by 
1 n -n~~~~~~~~~ the formal identity n (x +x l) = x ?X n . If n > 0, then Vn is a monic 

polynomial of degree n over Z. It satisfies 

VoJ(x) = 2, VJnn(x) = VJn(JKn(X)), 
(9.1) VI (X) = X, Vn (X) Vn (X) = Vm+n (X) + ? i-n (X), 

V2(X) = x -2, V2n (X) = Vn (X) -2 

The P + 1 factoring algorithm [16] starts with an integer a, chooses B1 and 
M as in (2.1), and computes 

(9.2) H =VM(a) mod N 

instead of (2.2). Suppose p I N, (p + 1) I M, and a2 _ 4 is a quadratic 
nonresidue mod p. Choose a E GF(p2) satisfying a = a + a I . Then a = 
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a" = aP + a which implies that a1 = a or a' = 61. The former is 
impossible since a - 4 is a quadratic nonresidue. Hence aP+' = 1 and 

M -M 
(9.3) VM(a) = a + a _ 2 (mod p). 

This implies that p I GCD(H- 2, N) (cf. (2.3)). The P + 1 algorithm operates 
in the multiplicative subgroup of elements of GF(p 2)* having norm 1 (i.e., 
algebraic conjugate equal to multiplicative inverse). 

As in P - 1, if the first step of P + 1 is unsuccessful, we can still succeed 
2 2 

(providing a 
- 

4 and hence H _ 4 is a quadratic nonresidue) if P + 1 is 
smooth up to B1 and has only one prime factor between B1 and B2 . Assume 
that 0 2 (mod 4). Set a = (H + -f4)/2 mod N so that H a + a 
(mod N) (in the machine, a would have real and imaginary parts mod N). 
An FFT version of step 2 can replace (5.1) by 

(9.4) f(x)= 1 (X a2u) 1 (X2 _ V2-(H)x + 1). 
IJu<6/4 O<u<6/4 

GCD(u, 0/2)= 1 GCD(u, 0/2)= 1 

Instead of (5.2), evaluate f along the geometric progression 

(9.5) avH/2 where 1 < v < 2B2/, v (mod 2). 
As in (5.3) and (5.4), if s = vO/2 - 2u and p as -1 J/(H) - 2, then 

P ( vO/2 2u) I ( vO/2 

The degree of f is 0(0/2) = /(O), as in the P - 1 algorithm. Since this f 
is a reciprocal polynomial (i.e., f(x) = xdeg(f)f(l /x) ), it needs only half the 
storage. This f will be evaluated at about B2/0 points, as in P - 1, but 
the points of evaluation (though not the coefficients of f ) have both real and 
imaginary parts when expressed mod N. This means that the methods of ?5 
cannot be directly applied to (5.6). The problem is easily circumvented by 
doing four convolutions: one with the real parts of both sequences, one with 
both imaginary parts (result multiplied pointwise by H2 _ 4 ), and two with a 
real part and an imaginary part. This can be reduced to three convolutions (and 

2 one multiplication by H _ 4) by emulating the trick 

(a~b H -4)(c+d H2-4) 

= ac + bd(H - 4) + ((a + b)(c + d) - ac - bd) H -4. 

Since H2 _ 4 is assumed to be a quadratic nonresidue mod p, we can do even 
better. If p I f(a" 0/2), then both the real and imaginary parts of f(a"'0/2) must 
be divisible by p. It suffices to compute only one of these parts before taking 
GCD's; that can be done with two convolutions mod N. 

10. RELATIONSHIP TO ELLIPTIC CURVES 

An elliptic curve E over a finite field whose characteristic is not 2 or 3 
consists of the solutions (x, y) of a cubic equation /2 = x3 + Ax + B where 



AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 853 

4A3 + 27B2 :& 0. These solutions, together with a point at infinity, form an 
additive, commutative group known as the Mordell-Weil group. When defined 
over a field of order p, the order of the Mordell-Weil group is bounded by 
[p - 2AJFi+ 1, p + 2AJFp+ 1], by a theorem of Hasse [15, p. 131]. By changing 
the pair (A, B), one changes curves and can obtain groups of different orders. 
Whereas the P - 1 algorithm provides only one group whose order must be 
smooth for success, the elliptic curve algorithm (ECM) [9, 1 1] provides many 
such groups, only one of which must be smooth. In order to implement an 
FFT version of ECM via the methods of ?5, it is necessary to construct a ring 
R[E, p] whose group of units R* has a subgroup isomorphic to the additive 
Mordell-Weil group. One can do this by decomposing the Mordell-Weil group 
into its cyclic subgroups, but the decomposition requires one to know the group 
order in the first place! We would like to be able to find an explicit injection 
which takes the result, H, from step 1 of ECM and maps it into the ring R. 
If we could do this, the algorithm could be made much more effective. 

Another approach uses Brent's birthday paradox algorithm [4]. This vari- 
ant of step 2 of ECM generates many random points (x, y) on the curve, 
all of which are multiples of the point generated by step 1. If two of these 
points happen to be equal or to be negatives of each other, then they will 
have identical x-coordinates. Construct a polynomial like (5.1) with several 
of these x-coordinates as roots, and evaluate that polynomial at the remaining 
x-coordinates. The methods of ?5 do not apply, since the points of evaluation 
will not lie in a geometric progression, but [1, ?8.5] gives a way for evaluating 
a polynomial of degree at most m - 1 at m points using convolutions of to- 
tal length O(m lg(m)) . By repeating this n/im times, we can evaluate it at n 
points in time O(n lg(m) lg(N) [lg(m) + lg(N)]). This is O(lg(m)) worse than 
the P - 1 extension in ?5, and may not be practical. 
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