
MATHEMATICS OF COMPUTATION
VOLUME 54, NUMBER 190
APRIL 1990, PAGES 839-854

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM

PETER L. MONTGOMERY AND ROBERT D. SILVERMAN

ABSTRACT. J. M. Pollard, in 1974, presented the P - 1 integer factoring al-
gorithm. His paper couched the algorithm in theoretical terms based upon use
of Fast Fourier Transform techniques, but he was unable to say whether the
method could be made practical. We discuss the mathematical basis of the al-
gorithm and show how it can work in practice. The practical implementation
depends, for its success, upon the use of Residue Number Systems. We also
present an open problem as to how the method could be made to work for the
Elliptic Curve factoring algorithm.

1. INTRODUCTION

Let N be an odd composite integer whose factorization is sought. A key
problem in one variant of the second phase of the P - 1 and Elliptic Curve
(ECM) factoring algorithms [1 1] is constructing two sequences

X0 , XI X ... X xM-1 '

goXYO , * *.. * ,Yn-I

over Z/NZ and checking whether GCD(xi - yj, N) > 1 for some i and j.
For example, in P - 1 the xi and yj might represent selected powers of an
element H mod N [11, p. 251]. In ECM the xi and yj might represent the
x-coordinates of selected points on an elliptic curve [11, p. 256]. A nontriv-
ial GCD will usually yield a factorization of N, and the chance of finding a
nontrivial GCD increases with mnn.

Let lg denote logarithm to the base 2 and In denote natural logarithm. Pre-
vious methods required O(mn) operations mod N to do the above tests; this
comes to O(mn lg 2(N)) bit operations, using classical algorithms for modular
arithmetic. If instead we select m and n such that m I n and m is a power of
2, then we can do it in O((n + m) lg(m) lg(N) [lg(m) + lg(N)]) operations and
O(m [lg(m) + lg(N)]) space by using fast polynomial convolution algorithms.
The time is even less for the P - 1 algorithm if we require that the y-sequence
be a geometric progression mod N. The constants are sufficiently small that

Received March 24, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 1 1Y05; Secondary 1 1A07,

1IT06, 11Y16, 65W05.
Key words and phrases. Convolutions, FFT, residue number systems, smooth groups, factoriza-

tion.
This work was done while the first author was at Unisys.

(1990 American Mathematical Society
0025-5718/90 $1.00 + $.25 per page

839

840 P. L. MONTGOMERY AND R. D. SILVERMAN

the method is practical. For example, if m is 16384, n is 131072, and N is a
100-digit number, then an Alliant FX/8 with four computational elements can
complete the approximately 2 109 tests in 16 minutes. In this way we found
the factors in Table 2 (see ?8).

2. CLASSICAL P - 1 ALGORITHM

The P - 1 factoring algorithm [14] depends, for its success, upon the concept
of a group of smooth order. An integer is said to be y-smooth if all of its prime
factors are less than y . Suppose that we have an arbitrary composite odd integer
N that we wish to factor, and that p is a prime dividing N. Preselect a limit
B1 (positive, real), and put

(2.1) M= f Pl',

p, prime

so that M is the product of prime powers less than B1 . Then, choose any
small integer a I ? 1 which is coprime to N, and compute

(2.2) H = aM mod N.

If p I N and p - 1 I M, then Fermat's Little Theorem implies that for some
integer k,

a modN = ak(p-) modN and a k(p-) - I = 0 (mod p).

Hence,

(2.3) p I GCD(am - 1, N) = GCD(H- 1, N).

Relation (2.3) will be true whenever p - 1 has all of its prime power divisors
less than B1, that is to say, the order I(Z/pZ)*I of the multiplicative group
(Z/pZ)* is B1 -smooth. It is a possible but rare occurrence for large N that N
has additional factors q of the same form as p. In that case all will appear
in the GCD of (2.3). To rectify this problem, one reduces the value of M.
Otherwise, p will equal the GCD, and not just divide it, in (2.3).

A second stage of the algorithm succeeds whenever I(Z/pZ)*I is smooth up
to B1 and has a single prime factor between B1 and B2, where B2 > B1.
This part of the algorithm proceeds as follows. Precompute the quantities

(2.4) H , H4, ..., HR mod N,
where the maximum exponent R equals or exceeds the largest gap between
successive primes in the interval (B1 , B2]. It seems not to exceed ln 2(B2) [3,
17]. For B <<s<B2, define

QS = Hsmod N = ams mod N.

If pj is the jth prime in the interval (B1, B2], then

(2.5) QP -Hp' modN and Qp = HPJ+- PQp (mod N),
p1 J+1 I

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 841

where Hj+'I P mod N is found by table look-up. Accumulate the product

7r(B2)-7r(B,)

(2.6) P= (Qp -1) mod N
j=I

and periodically compute GCD(P, N). Step 2 succeeds if p - 1 I Ms for
some prime s with B1 < s < B2. When the algorithm is implemented in
this fashion, each prime in the interval (B1 , B2] requires one multiplication
mod N from (2.5) and one from (2.6). Add the setup cost in (2.4) to get a
total of 2(ir(B2) - ir(B1)) + O(ln2(B2)) modular multiplications. Montgomery
[1 1] suggests methods for reducing the number of multiplications.

3. CONVOLUTION THEOREM

Our algorithms require considerable manipulation of polynomials over
Z/NZ, esp. multiplication and evaluation. One may use Fast Fourier Trans-
forms (FFT) to perform the polynomial multiplications via the Convolution
Theorem [1, Chapter 7].

Theorem 1 (Convolution theorem). Let f(x) = EZ'j- fix' and g(x) =

Z'I_ gix' be polynomials of degree at most n - 1. Let

n-I

s(x) = f(x)g(x) mod (xn - 1) = Zsix'
i=O

(so that si = Zj+k=-l (mod n) f gk). Form the following vectors of length n:

If =[fo fiX X ... n-1]5

9 = g X0 915 .. X gn-1]-

Then the circular convolution f ? g is

50=[So X51 SI * *. * Sn_-I FFT (FFT () * FFT g))

where * indicates a pointwise product. The quantity FFT(x) is the Fast Fourier
Transform of the vector x, and FFT 1 is the inverse transform.

The FFT in Theorem 1 is performed over the ring Z/NZ and is exactly
analogous to the more familiar FFT's over C. If co is a primitive root of order
n [1], then the FFT of the vector x of length n is

n-I

FFT(x) = [y0,Y1,..Y1] where l =Z xJw.
J=O

By choosing n larger than the degree of the product and by padding f and g
with leading zeros, one can compute an exact polynomial product via a circular
convolution.

Assume n > 1 is a power of 2 and N is odd. If we know a primitive nth
root of unity mod N, then a convolution algorithm based upon straightforward

842 P. L. MONTGOMERY AND R. D. SILVERMAN

implementation of the Fast Fourier Transform will take O(n lg(n)) arithmetic
operations mod N. Such a primitive root will not exist unless all prime fac-
tors of N are congruent to 1 mod n; however the factorization of N is un-
known. Nussbaumer's convolution algorithm [13; 8, Exercise 4.6.4-59] avoids
this requirement, and can perform a circular convolution of length n in time
O(n lg(n)) multiplications and O(lg2 (n)) additions mod N. We do not use,
and hence do not describe, Nussbaumer's method in detail. The convolutions
can be performed more efficiently with the use of Residue Number Systems,
because multiplication mod N is expensive.

4. POLYNOMIAL CONVOLUTIONS BY RESIDUE NUMBERS

One can multiply two polynomials in Z/N7[x] together mod N by multi-
plying them together over Z and then reducing the coefficients mod N. If the
original coefficients are in the interval [0, N- 1i], and both original polynomials
have degree at most n - 1, then the coefficients of the polynomial product will
be in the interval [0, n (N - 1)2]. By reducing the original coefficients mod-
ulo enough primes pi, performing separate convolutions over the finite fields
Z/piZ, and then using the Chinese Remainder Theorem (henceforth abbrevi-
ated as CRT), the coefficients of the product mod N can be reconstructed. The
key to the usefulness of this approach is that all of the computations may now
be performed in single-precision arithmetic if the pi 's are chosen properly.

To compute a polynomial product f(x)g(x) mod N mod (xn - 1), where f
and g have degree at most n - 1 with coefficients in the interval [0, N - 1],
select K distinct primes pi for 0 < i < K- 1 with pi1 (mod n), such that

K-1

(4.1) P= f Pi>nN2/(1 -_), > 0.
i=O

Try to select the primes pi as large as possible while remaining single precision,
in order to minimize K. If the machine has too small a word size, then there
may not be enough primes available, forcing the use of double precision. If
all pi are in an interval [Pmax/2' Pmax]" then the Prime Number Theorem says
(approximately)

K < Pmax - Pmax/2 _ Pmax
- q(n) ln(Pmax) 20(n) ln(Pmax)'

But (4.1) requires K ln(pmax) > ln(n) + 2 In(N) . Consequently,

Pmax > 2q$(n)[In(n) + 2 In(N)].

For example, if n = 65536 and No 101000, then

Pmx> 2 * 32768 * 4620 -,,1. 1 . 228

requiring the use of 29-bit primes. If one uses 32-bit primes, then

3g(n) + 2 1g(N) 6g(N)

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 843

One now performs K single-precision convolutions mod pi, rather than one
convolution mod N. This construction provides an additional advantage in
that the individual convolutions are independent of one another and may be
performed in parallel or in vector mode. The congruence restrictions on pi
ensure that appropriate primitive roots of order n, required to do the FFT's,
exist.

Let sij, ? < i < K- 1, 0 < j < n- I be the coefficients obtained from the
individual convolutions taken mod pi. We use the CRT to reconstruct the coef-
ficients of the product f(x)g(x) mod (xn - 1) mod N from those convolutions.
Precompute the quantities

VI = P/pi and r1 = vil mod pi, 0 < i < K- 1.

For each j, 0 < j < n - 1, compute

(4.3) yij = rlsl mod pi, 0 < i < K - 1

and
K-1 K-1i

(4.4) SiZ vlyl -k P where k = L P + 8,2

Let the jth coefficient of f(x)g(x) mod (xn - 1) be s j. Then

Si= sli(Virl)sij=_vlylJ =_ SJ (mod p,)

for all i, implying s= S. (mod P). The choice of P in (4.1) ensures 0 <
s < n(N- 1)2 < P, and the choice of k in (4.4) ensures 0 < Si < P.
Consequently sj = SJ, implying sj mod N = Si mod N.

When evaluating SJ mod N, one can use precomputed values of vi mod N
and P mod N in (4.4).

The value of k can be estimated by floating-point arithmetic if one selects
ie in (4.1) and (4.4) so the accumulated error (due to round-off) in the second
sum of (4.4) will not exceed e/2. Indeed,

K-1
yj

K-1 V Yj

1=0 11=0

= (SJ + kJP)/P + e/2

E [k + e/2, ki + e/2 + n(N - 1)2/P]

C [ki +,e/2, k +,e/2 + (I -,e)]

= [k + e/2, ki + 1 -e/2]

differs by at least e/2 from the nearest integer.
The usual FFT algorithm divides by n at the end of each convolution mod

p,. These divisions may be incorporated into (4.3) by replacing r1 by n1 Ir
modp,.

844 P. L. MONTGOMERY AND R. D. SILVERMAN

5. FFT IMPLEMENTATION OF STEP 2

Select 0 B2 and compute the coefficients ai of

(5.1) f(X)=Zalx' = H (x-Hu) modN,
1=0 0<u<6

GCD(u, 0)=I

where 0 denotes the Euler totient function. After computing the powers Hu,
the coefficients al can be computed by writing the product in (5.1) as a product
of polynomials of equal degree, and recursively multiplying them together in
pairs, using the methods of ?4.

Next, evaluate f(x) along the geometric progression

(5.2) HV0, < v < B2/0.

The reason is that if p I GCD(Hs - 1, N) where s = vO - u, then

(5.3) P I GCD(Hv
- Hu ,N)

so that

(5.4) p I GCD(f(HVo), N).

These points of evaluation form a geometric progression mod N. A polyno-
mial of degree n may be evaluated along m points of a geometric progression
with a circular convolution of length n + m, followed by some simple post-
multiplications. Given f defined by (5.1), suppose we wish to evaluate it at
x = e, er, er2 ,errn1i. Set L= n + m - 1, where n = 0(0), and form the
vectors (all taken mod N)

Y = a r-k(k+ 1)/2 0 < k < n;

(5.5) Yk = ? n + 1 < k < L;

eL-k (L-k)(L-k+1)/2 0 < k < L.

Compute the circular convolution, y 0 z, of the vectors y and z, yielding
another vector u of length L + 1 . We then apply the following result.

Theorem 2 (Polynomial evaluation). If the vectors j7 and za are given as in (5.5),
and u = y 0 z, then

(5.6) k (erk e-k r-k(k+1)/2U 0 < k < m-

Proof. By the definition of a circular convolution, the elements of y 0 z are
the coefficients of a polynomial u which is the product mod (xL+I - 1) of two

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 845

polynomials whose coefficients are given by yj and Zk . If i> n then

Ui = E Yj Zk= E Yj Zk
j+k-i (mod L+1) j+k=i (mod L+1)

O<j<L O<j<n
O<k<L O<k<L

-j(j+1)/2 L-k (L-k)(L-k+1)/2
ai r e r

j+k=l
O<J<n
O<k<L

Let i= L - s, where 0 < s < m - 1 . This implies that k= L - s - j, and
n

UL-s = E a rj(j+ 1)/2 s+j r(s+j)(s+j+1)/2

j=O

n
S s(s+ l)/2 E Ja eSrSj = eSrs(s+ 1)/2 f (erS)

J=o

As with the coefficient evaluation, these convolutions may be performed modulo
a fixed set of primes and the CRT used to reassemble the results mod N. The
CRT need be used only for those coefficients required by (5.6).

Our application uses (5.5) and (5.6) with r = Ho mod N, while e varies.
Since GCD(rk(k+l)/2ek, N) = 1 , we can ignore the multiplications from (5.6)
and take greatest common divisors directly from the final convolution vector in
(5.4). The vector y is fixed, so it and its forward transforms mod pi need to be
computed only once. The powers of r and I/r in (5.5) may be precomputed,
so that computation of Zk requires only computing the relevant powers of e
and multiplying them by the appropriate power of r.

If (p - 1) I Ms, then the algorithm will succeed from (5.6) at k = L i0 J. In
essence, evaluating f (rk) tests all possible primes s in the range [0(k- 1), k] .
The reason we need powers of e in (5.5) and (5.6) is because we need to evaluate
f(rX), x = 0, ... , B2/O and we evaluate it at only m points at a time. The
first progression runs from 1 to rm 1, the second from rm to r2m- 1, etc. We
thus set e successively to 1, rm , r 2m ... and perform multiple convolutions
of length (O) ++m.

It is not necessary to compute a GCD for every k in (5.6). Instead, one can
compute H%1l ULk mod N and then take a single GCD. If multiple factors
appear, then one can go back and compute the GCD's individually.

6. COMPLEXITY

In this section we compare the complexity of performing the convolutions
mod N, using Nussbaumer's algorithm, versus using the method in ?4. We
also suggest how to select the algorithm parameters to yield good performance.
We take, as our fundamental unit of work, a single-precision modular multipli-
cation.

846 P. L. MONTGOMERY AND R. D. SILVERMAN

Consider the cost of a circular convolution of length n with coefficients
in Z/NZ. Nussbaumer's algorithm uses O(nlg(n)) multiplications mod N
and O(n lg2 (n)) additions mod N. If one assumes classical algorithms for
arithmetic, then the cost of a modular multiplication mod N is O(lg2 (N)) and
the cost of a modular addition is O(lg(N)), for a total cost of

(6.1) O(n lg(n) lg(N) [lg(n) + lg(N)]) units (Nussbaumer's algorithm).

Using the CRT requires O(n lg(n)K) units to do a convolution of length n
mod all pi, plus O(n lg(N)K) to reduce the original coefficients mod p1, and
O(n lg(N)K) more to perform the CRT. Upon substituting K from (4.2), we
find that the work per convolution is

(6.2) O(n lg(N) [lg(n) + lg(N)]) units (CRT).

A. Computation of coefficients. Let d = q(6). To compute the polynomial of
degree d, we perform one convolution of length d, two of length d/2, four
of length d/8 . The total work by Nussbaumer's algorithm sums to

(6.3) O(d lg (d) lg(N) [lg(d) + lg(N)]) units.

If we use the CRT, then the total work is

(6.4) O(d lg(d) lg(N) [lg(d) + lg(N)]) units.

We observe that (6.4) is a factor of O(lg(d)) faster than (6.3). We also note
that the factor of 1/ 16, from (4.2), does not affect the asymptotic complexity,
but has great practical value. A naive computation of the coefficients, by direct
long multiplication, would take

(6.5) O(d2 1g2(N)) units.

B. Evaluation of the Polynomial. Performing a convolution of length L + 1 to
evaluate the polynomial mod N via Nussbaumer's method will take

(6.6) O((L + 1) lg(L + 1) lg(N) [lg(L + 1) + lg(N)]) units.

Performing the convolutions via the CRT will take

(6.7) O((L + 1) lg(N) [lg(L + 1) + lg(N)]) units.

We observe that (6.7) is a factor of O(lg(L + 1)) faster than (6.6).

C. Example. To illustrate how much of a typical speedup is obtained by using
convolutions over (2.5) and (2.3), let us take B2 = 1010. Consider using Nuss-
baumer's algorithm and select 0 = 72930 = 2 * 3 * 5 * 11 * 13 * 17 105 . We
then have d = 0(0) = 15360. The advantage of selecting 0 in this fashion is
twofold. The first is that /(0) is small, relative to 0, and hence the degree of
the polynomial is small. The second is that it allows the sizes of the convolutions
to be very close to powers of 2, simplifying computation of the FFT's.

Nussbaumer's algorithm takes exactly 3 21n-+Flgnl multiplications mod N
for a convolution of length 2 n [8, Exercise 4.6.4-59], so with Nussbaumer's

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 847

algorithm, for our chosen 0, computation of the coefficients in (5.1) will take
14 14-n n 1rgn 20 6

E>l52 3 * 2n l[lg(n)1 = 3 * 2 3.1 * 10 multiplications mod N. The
time to perform the necessary additions mod N will be small relative to this
quantity. To evaluate the polynomial, we will need to compute f(HVo) for
v = 1, ..., (1010/72930) 138000. This will be done in eight convolutions
of length 32768, each convolution computing 32768 - 15360 = 17408 points.

18 6 The convolutions will then take 8 . 3 * 2 6.3* 10 multiplications mod N,
and the total work will be about 9.4 106 modular multiplications. Since there
are approximately 4.5* 108 primes less than 101 , performance of step 2 via
convolutions will be about 95 times better than the original method using (2.5).

Use of the CRT will result in an even greater speedup over Nussbaumer's
method. For a 300-bit N represented in radix 230 it takes 210 single-precision
multiplication instructions to multiply two numbers mod N. It also takes
twenty 31-bit primes from (4.1) for the CRT. A convolution of length 2n will
therefore take 210.3.2 n-1+?lg(n)1 = 31 5.2n+?[g(n)] operations using Nussbaumer's
algorithm. Assuming that the necessary powers of the primitive roots of unity
have been precomputed, careful counting of the total operations involved in the
CRT reveals a total of (60n + 670)2n multiplications/divisions to perform the
convolutions and reconstruct the coefficients. For n = 15, the CRT is there-
fore 3.4 times as fast. This will increase asymptotically to n times as fast as
N - oo.

7. ALGORITHMIC DESCRIPTION AND CODING CONSIDERATIONS

For the example given above we have /(O) = 15360 = 2 0.3 .5. In practice,
before beginning the convolutions, it is convenient to break the product in (5. 1)
into smaller products, each a polynomial of degree equal to the odd part of
q(0) . Our code therefore starts by forming 1024 polynomials mod N of degree
15. Multiply these in pairs to get 512 polynomials of degree 30, then 256 of
degree 60, ... , 1 of degree 15360. At each stage, all convolution lengths are
equal, so it suffices to select the pi and do the precomputations for the CRT
only once per stage. Each polynomial mod N is converted to K polynomials
mod pi, the convolutions are performed, and the polynomials mod pi are then
converted back to a single polynomial mod N. The full algorithm is as follows:

(1) Select B1 and perform step 1 of the P - 1 algorithm. Let H be the
output.

(2) Verify GCD(H- 1, N)= 1.
(3) Given H from step 1, compute Hu for 1 < u < 0, GCD(u, 0) = 1.
(4) Form, via long multiplication, q(0)/q polynomials mod N of degree

q, where q is the odd part of q(0). Let conlen be the least power of
2 exceeding 2q.

(5) Repeat the following procedure until one has a single polynomial f(x)
of degree /((0), as in (5.1).
Sa. Select an appropriate set of primes. These primes must be congruent

848 P. L. MONTGOMERY AND R. D. SILVERMAN

to 1 (mod con/en). Find appropriate primitive roots of these primes
for the FFT's. The primes and their roots can be precomputed and
placed in a table.
Sb. Reduce the polynomials mod each of these primes.
Sc. Multiply the reduced polynomials in pairs, via the Convolution
Theorem, yielding 0(0)/(2q) polynomials of degree 2q for each pi.
Replace q by 2q and con/en by 2conlen.
Sd. Reconstruct products mod N from the separate polynomials mod p,
via the CRT.

(6) Compute or look up in a table the necessary primes for (5.5) and (5.6).
(7) Reduce f(x) modulo these primes and perform the convolutions to

evaluate f(x) mod pi.
(8) Reconstruct f(x) mod N via the CRT and compute the GCD's in

(5.4).
Remark 1. One can effectively find a primitive root of order r mod p by
successively trying a (p- 1)/r for a = 2, 3, . If r is a power of 2, it suffices
to make a a quadratic nonresidue mod p.
Remark 2. There are variations to our scheme for the calculation of the coef-
ficients. Rather than treat the coefficients as integers in [0, N - 1], they can
instead be treated as in the interval [(1 - N)/2, (N - 1)/2]. In this case the
bound in (4.1) for P can be halved and the computation of ki in (4.4) should
round to the nearest integer. However, this scheme will usually not reduce K,
and it requires signed arithmetic during the conversion to and from residue
numbers. It is easier, when doing multiple-precision arithmetic, to use only
unsigned quantities.

Remark 3. The vectors in (S.S) can be computed without modular exponenti-
ations (which are expensive). To compute rk = rk(k+l)/2 for successive values
of k, it suffices to do the following:

(1) Set ro= 1 and let R0=r.
(2) For i =1, ..., n, compute ri = ri- -11 and Ri = RORI1.

This replaces each modular exponentiation with just two modular multiplica-
tions (but does not parallelize well). Likewise, one can replace the last line of
(S.S) by

(1) Set zL= 1 and let ZL=e.

(2) For i = L- 1, ..., 0, compute Z1 = rZ1+1 and zi = zi+IZI .

Remark 4. Instead of using 0 < u < 0 and GCD(u, 0) = 1 in (5.1), one can
use arbitrary representatives of (Z/0Z)* for u provided each ult < B2. The
advantage is that one can use the multiplicative relations amongst the Hu to
shorten the computation of f by a factor of O(lg(0(0))). We illustrate the
procedure assuming 0 = 2qlq2q3 for distinct odd primes q,, with each ql _ 1
(mod 2"').

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 849

(1) Initialize

F(x, y)= II (x - Hiy) mod N
l<j<Q
j odd

1 <j modq < (qua-1)/2 Vi

(homogeneous of degree (q, - 1)(q2 - 1)(q3 - 1)/20'+a2+'3 = 0(0)/2c'+01+03
(2) For 1< i<3 and 1 <k<a, replace

M j - 1)2k(mod qj) F(x, y) +- F(x, y)F(x, HMy) mod N where { (q1 1)/2(
m 0(mod O/q,).

The iterations over i and k can occur in any convenient order. Each iteration
doubles the degree of F, and uses approximately 2 lg(m) + 2 deg(F) multi-
plications mod N to compute the coefficients of F(x, Hmy) from those of
F(x, y), plus one convolution of length at least 2 deg(F) + 1 to do the poly-
nomial multiplication.

(3) Set f(x) = F(x, 1).

Remark 5. Our implementation uses 42 Mbytes of data storage and can ac-
commodate N I 250 decimal digits. Storage requirements grow linearly with
lgN. We did not optimize the program for space and can cut storage at least
in half by using some statically defined arrays for different things in different
places. For example, we declared separate arrays for the coefficient and polyno-
mial evaluation calculations. A minimal storage implementation should be able
to handle 100-digit composites in 6-8 megabytes of storage without difficulty.

8. RESULTS

In this section we present timing information for various stages of the algo-
rithm on an Alliant FX/8 computer with four computational elements (CE's).
Each one has vector instructions which make performing FFT's and dot prod-
ucts as in (4.4) very efficient. The Alliant computer is a tightly coupled parallel
processor with shared memory. Many stages of our algorithm can be com-
puted in parallel with 100% efficiency. For example, the convolutions mod each
of the separate primes from (4.1), the reconstruction of the coefficients from

Si mod N, and the GCD's from (5.4) may all be conducted in parallel. Fur-
thermore, since there are K primes from (4.1), T processors (T < K) will
run approximately T times as fast as one processor. The step-2 parts of the
computations that are not parallelizable form only a small percentage of the
total work. Table 1 gives timing information in seconds for a step-2 limit of
10 for 25-, 50- and 100-digit composite integers. The times given that are
relevant to (5.5) and (5.6) are those for one iteration only, using the parameters
given in ?6.C. Eight separate iterations of (5.5) and (5.6) are required to cover
the entire interval from B1 to B2. The time given to set up the vectors in (5.5)
is split into two parts. The first number is the time to compute the powers of r,

850 P. L. MONTGOMERY AND R. D. SILVERMAN

TABLE 1. Algorithm performance in seconds (4 computational elements)

Computation 25 Digits 50 Digits 100 Digits

Compute roots of (5.1) 12 48 195

Form 1024 polynomials 27 110 440
of degree 1 5

Convolution time for (5.1) 105 212 425

Coefficient reduction & 9 5 0
CRT time for (5. 1)

Construct vectors for (5.5) 28/5 105/18 380/70

Convolutions for (5.5) 83 165 330

CRT time for (5.5) 13 50 200

and occurs only once. The second number is the time to multiply by the powers
of e for Zk, and occurs at each iteration.

Using naive modular multiplication, step 1 takes O(B1 lg 2(N)) time. It does
not parallelize at all, short of programming the underlying modular multipli-
cation in parallel. A single computational element of the Alliant takes 5500

6 100 seconds to perform step 1 for B1 = 3. 10 and N 10-IO
A step-2 implementation based upon (2.5) and (2.6) takes approximately

55000 seconds for B2 = 108 and N = 10 10 on a single CE. It takes about
8500 seconds when speeded by the methods of [11]. We have not taken step
2 to 1010 by the older methods, but since ir(10)/(108) 79, we project
that for B2 = 1010 step 2 will take about 4,300,000 seconds using (2.5) and
(2.6) directly, and 660,000 seconds by the methods of [11] for a single CE.
Furthermore, computation of step 2 via (2.5) and (2.6) does not parallelize
well. The newer methods presented herein take 30700 seconds for a single CE;
a factor of 139 over (2.5) and (2.6) and a factor of 22 over the methods of [11].
We observe that these factors will increase as N increases.

Table 2 lists some new factorizations found by the method described herein,
6 10 using a step-I limit of 3 10 and a step-2 limit of 10 . With the exception of

U575 they are all taken from the 'Cunningham Project' [6]. The designations
y, xxx? indicate a cofactor of yXXX ? 1 respectively. The number U575 was
a cofactor of the 575th Fibonacci number and its 34-digit factor is the largest
factor yet found by P - 1 . We note that on average the Elliptic Curve algorithm

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 851

will still be more effective than the P - 1 algorithm, even with our enhance-
ments. While step 1 of ECM runs about 8 times slower than step 1 of P - 1,
step 2 takes about the same time for both, using non-FFT techniques. A com-
parison of the run times and effectiveness of the two methods was presented in
[5]. It is difficult to directly compare the run time of the two algorithms since
ECM is a random method while P - 1 is deterministic. Many factors which
would have otherwise been found by our method had already been found by
ECM.

TABLE 2. Factorizations

N Factor (P) P - 1

2,584+ 32871186029052837857 2 13 73 163 * 209333 * 31722973
2,656+ 591100350038949953 26 41 71 5737 . 553036999
2,664+ 3508428556083287152033 25 3 3 71 * 83 * 151 * 2007359 * 15751691
2,784+ 66308056470365249 26 .72 11 * 19 433 * 233644769

1 6 2 3
2,1008+ 494077391563970390335488001 2 * 3- l 5 * 7 31 l 67 168677 l 2732575201

5 2
2,1032+ 242193739165634585377 2 * 3 * 43* 1861 * 24371 * 431203469
2,535+ 10155021917057853331411 2 . 35 5 * 107 * 5347 * 17093 * 427328971
2,591+ 8588408897489780521 23 .32 *5 * 7 167 197 * 367 l 282269147
2,661+ 36640709883877569115302731 2 * 5 * 457* 661 * 131543 * 163337 * 564538939

3 2 2
2,733+ 6032100214690846655623731769 2 *3l7 *17 *67 173 * 733 * 1634681-

*1277925359
2,813+ 897186516077633497 23 *3 11 * 13 * 271 * 3559564581
2,873+ 921446320166308603 2.32 *29 l 97 * 309107 l 58873379
2,895+ 5070463106922154841 23 * 5 19 . 179 * 5737 * 6496749983
2,1017+ 28876407885213594067 2.32 *41 * 113 * 1092173 l 317042093

8 2 2 2 U575 7146831801094929757704917464134401 2 .5 .11 *23 .821 . 3371 . 39209.
.3394739 * 47358559

9. APPLICATION TO P + 1 ALGORITHM

For an integer n, the nth Lucas (Chebyshev) polynomial, Vn, is defined by
1 n -n~~~~~~~~~ the formal identity n (x +x l) = x ?X n . If n > 0, then Vn is a monic

polynomial of degree n over Z. It satisfies

VoJ(x) = 2, VJnn(x) = VJn(JKn(X)),
(9.1) VI (X) = X, Vn (X) Vn (X) = Vm+n (X) + ? i-n (X),

V2(X) = x -2, V2n (X) = Vn (X) -2

The P + 1 factoring algorithm [16] starts with an integer a, chooses B1 and
M as in (2.1), and computes

(9.2) H =VM(a) mod N

instead of (2.2). Suppose p I N, (p + 1) I M, and a2 _ 4 is a quadratic
nonresidue mod p. Choose a E GF(p2) satisfying a = a + a I . Then a =

852 P. L. MONTGOMERY AND R. D. SILVERMAN

a" = aP + a which implies that a1 = a or a' = 61. The former is
impossible since a - 4 is a quadratic nonresidue. Hence aP+' = 1 and

M -M
(9.3) VM(a) = a + a _ 2 (mod p).

This implies that p I GCD(H- 2, N) (cf. (2.3)). The P + 1 algorithm operates
in the multiplicative subgroup of elements of GF(p 2)* having norm 1 (i.e.,
algebraic conjugate equal to multiplicative inverse).

As in P - 1, if the first step of P + 1 is unsuccessful, we can still succeed
2 2

(providing a
-

4 and hence H _ 4 is a quadratic nonresidue) if P + 1 is
smooth up to B1 and has only one prime factor between B1 and B2 . Assume
that 0 2 (mod 4). Set a = (H + -f4)/2 mod N so that H a + a
(mod N) (in the machine, a would have real and imaginary parts mod N).
An FFT version of step 2 can replace (5.1) by

(9.4) f(x)= 1 (X a2u) 1 (X2 _ V2-(H)x + 1).
IJu<6/4 O<u<6/4

GCD(u, 0/2)= 1 GCD(u, 0/2)= 1

Instead of (5.2), evaluate f along the geometric progression

(9.5) avH/2 where 1 < v < 2B2/, v (mod 2).
As in (5.3) and (5.4), if s = vO/2 - 2u and p as -1 J/(H) - 2, then

P (vO/2 2u) I (vO/2

The degree of f is 0(0/2) = /(O), as in the P - 1 algorithm. Since this f
is a reciprocal polynomial (i.e., f(x) = xdeg(f)f(l /x)), it needs only half the
storage. This f will be evaluated at about B2/0 points, as in P - 1, but
the points of evaluation (though not the coefficients of f) have both real and
imaginary parts when expressed mod N. This means that the methods of ?5
cannot be directly applied to (5.6). The problem is easily circumvented by
doing four convolutions: one with the real parts of both sequences, one with
both imaginary parts (result multiplied pointwise by H2 _ 4), and two with a
real part and an imaginary part. This can be reduced to three convolutions (and

2 one multiplication by H _ 4) by emulating the trick

(a~b H -4)(c+d H2-4)

= ac + bd(H - 4) + ((a + b)(c + d) - ac - bd) H -4.

Since H2 _ 4 is assumed to be a quadratic nonresidue mod p, we can do even
better. If p I f(a" 0/2), then both the real and imaginary parts of f(a"'0/2) must
be divisible by p. It suffices to compute only one of these parts before taking
GCD's; that can be done with two convolutions mod N.

10. RELATIONSHIP TO ELLIPTIC CURVES

An elliptic curve E over a finite field whose characteristic is not 2 or 3
consists of the solutions (x, y) of a cubic equation /2 = x3 + Ax + B where

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 853

4A3 + 27B2 :& 0. These solutions, together with a point at infinity, form an
additive, commutative group known as the Mordell-Weil group. When defined
over a field of order p, the order of the Mordell-Weil group is bounded by
[p - 2AJFi+ 1, p + 2AJFp+ 1], by a theorem of Hasse [15, p. 131]. By changing
the pair (A, B), one changes curves and can obtain groups of different orders.
Whereas the P - 1 algorithm provides only one group whose order must be
smooth for success, the elliptic curve algorithm (ECM) [9, 1 1] provides many
such groups, only one of which must be smooth. In order to implement an
FFT version of ECM via the methods of ?5, it is necessary to construct a ring
R[E, p] whose group of units R* has a subgroup isomorphic to the additive
Mordell-Weil group. One can do this by decomposing the Mordell-Weil group
into its cyclic subgroups, but the decomposition requires one to know the group
order in the first place! We would like to be able to find an explicit injection
which takes the result, H, from step 1 of ECM and maps it into the ring R.
If we could do this, the algorithm could be made much more effective.

Another approach uses Brent's birthday paradox algorithm [4]. This vari-
ant of step 2 of ECM generates many random points (x, y) on the curve,
all of which are multiples of the point generated by step 1. If two of these
points happen to be equal or to be negatives of each other, then they will
have identical x-coordinates. Construct a polynomial like (5.1) with several
of these x-coordinates as roots, and evaluate that polynomial at the remaining
x-coordinates. The methods of ?5 do not apply, since the points of evaluation
will not lie in a geometric progression, but [1, ?8.5] gives a way for evaluating
a polynomial of degree at most m - 1 at m points using convolutions of to-
tal length O(m lg(m)) . By repeating this n/im times, we can evaluate it at n
points in time O(n lg(m) lg(N) [lg(m) + lg(N)]). This is O(lg(m)) worse than
the P - 1 extension in ?5, and may not be practical.

ACKNOWLEDGMENTS

The authors are grateful to Mr. Tony Davis for providing programming sup-
port for this project and to the MITRE Corporation for having provided the
computer time for this project.

BIBLIOGRAPHY

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer algorithms,
Addison-Wesley, Reading, MA, 1974.

2. A. Borodin and I. Munro, The computational complexity of algebraic and numeric problems,
American Elsevier, New York, 1975.

3. R. P. Brent, Thefirst occurrence of certain large prime gaps, Math. Comp. 35 (1980), 1435-
1436.

4. R. P. Brent, Some integer factorization algorithms using elliptic curves, Research Report
CMA-
R32-85, The Center for Mathematical Analysis, The Australian National University, 1985.

5. J. Brillhart, P. L. Montgomery, and R. D. Silverman, Tables of Fibonacci and Lucas factor-
izations, Math. Comp. 50 (1988), 251-259.

854 P. L. MONTGOMERY AND R. D. SILVERMAN

6. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factoriza-
tions of bn i I, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, (2nd ed.) Contemporary
Mathematics, vol. 22, Amer. Math. Soc., Providence, RI, 1988.

7. A. M. Despain, A. M. Peterson, 0. S. Rothaus, and E. H. Wold, Fast Fourier transform
processors using Gaussian residue arithmetic, J. Parallel & Distributed Comp. 2 (1985),
219-237.

8. D. E. Knuth, The art of computer programming, Vol. II, Seminumerical algorithms, Addi-
son-Wesley, Reading, MA, 1981.

9. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 649-673.
10. J. H. McClellan and C. M. Rader, Number theory in digital signal processing, Prentice-Hall,

Englewood Cliffs, NJ, 1979.
11. P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math.

Comp. 48 (1987), 243-264.
12. A. Norton and A. J. Silberger, Parallelization and performance analysis of the Cooley-Tukey

FFT algorithm for shared memory architectures, IEEE Trans. Comp. C-36 (1987), 581-591.
13. H. J. Nussbaumer, Fast Fourier transforms and convolution algorithms, Springer-Verlag,

New York, 1982.
14. J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos.

Soc. 5 (1974), 521-528.
15. J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106,

Springer-Verlag, New York, 1986.
16. H. C. Williams, A p + 1 method offactoring, Math. Comp. 39 (1982), 225-234.
17. J. Young and A. Potler, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024.
E-mail: pmontgom~math.ucla.edu

THE MITRE CORPORATION, BURLINGTON ROAD, BEDFORD, MASSACHUSETTS 01730. E-mail:
bs~mitre.org

	Cit r273_c274:

